Gli scienziati hanno scoperto un enzima batterico capace di modificare il DNA dei mitocondri, le centrali energetiche delle cellule: una svolta per la ricerca sulle malattie mitocondriali
Dopo Crispr-Cas9, ecco che un altro batterio (Burkholderia cenocepacia) ci fornisce un nuovo sistema di editing del dna, che potrebbe dare una svolta alla ricerca sulle malattie mitocondriali permettendoci di creare modelli animali per lo studio delle mutazioni. L’enzima taglia-e-cuci è stato chiamato DddA: può entrare nei mitocondri (gli organelli cellulari che forniscono energia alle cellule) e da solo modificare il dna mitocondriale a doppio filamento convertendo la base azotata citosina (C) in uracile (U).
Mitocondri e malattie mitocondriali
I mitocondri sono organelli cellulari dotati di membrane e possiedono un proprio materiale genetico, cioè molecole di dna a doppio filamento in cui si trovano informazioni che non sono presenti nel dna nucleare della cellula e che sono indispensabili per il benessere dell’organismo. Quando infatti i mitocondri funzionano male, per esempio a causa di mutazioni nel dna mitocondriale, le conseguenze sono in genere gravissime e compromettono la vita, perché influenzano la capacità di generare energia.
Le malattie mitocondriali sono condizioni ereditarie (di solito trasmesse per via materna, dato che i mitocondri del nuovo individuo sono quelli presenti nella cellula uovo al momento del concepimento) rare per cui non esiste una vera e propria cura. Si possono trattare i sintomi, per quanto possibile, ma sono comunque difficili da studiare in laboratorio perché non esistono modelli animali che le riproducano abbastanza fedelmente.
Anche la prevenzione non è così attuabile. Una tecnica che è stata adottata in alcuni Paesi per consentire la nascita di un bambino sano da una coppia portatrice di una mutazione è quella di trasferire il nucleo della cellula uovo (o dell’embrione) coi mitocondri malati in una cellula uovo sana privata del proprio nucleo. Sono i cosiddetti bambini con tre genitori, anche se questa definizione è un po’ imprecisa.
L’editing del dna mitocondriale
Il motivo per cui gli scienziati non sono stati in grado di creare modelli animali di malattia è che finora non si era riusciti a modificare con precisione il dna mitocondriale, nemmeno con il potente (e ormai famoso) sistema di editing Crispr-Cas9.
Oggi però i ricercatori del Mit insieme a quelli di Harvard hanno trovato un nuovo modo per apportare modifiche mirate al dna mitocondriale: un passo che potrebbe essere una svolta per la ricerca su queste malattie e che magari in futuro potrebbe essere usata addirittura per eliminare le mutazioni dannose nei mitocondri.
Il team coordinato a David Liu ha sfruttato l’enzima DddA , una tossina prodotta dal batterioBurkholderia cenocepacia scoperta qualche anno fa dal microbiologo dell’università di Washington Joseph Mougous. Questo enzima è in grado di convertire la base azotata citosina (C) del dna in uracile (U), un’altra base azotata che di solito non si trova nel dna e che i meccanismi di replicazione del dna della cellula copiano come timina (T). L’effetto che si ottiene, dunque, è che nella sequenza di dna le C vengono convertite in T. Modifiche così precise sono possibili anche con Crispr-Cas9, ma solo se si rompe il doppio filamento del dna e si usa un rna per guidare Cas9 nel punto desiderato della sequenza, e questo non può essere fatto nei mitocondri.
Il vantaggio del nuovo sistema è che la tossina DddA può agire direttamente su dna a doppio filamento, una caratteristica che però è anche quella che rende la tossina particolarmente pericolosa perché senza controllo muterebbe ogni C in T. Gli scienziati dunque hanno dovuto trovare un modo per imbrigliarlae indirizzarla a proprio piacimento. Hanno diviso l’enzima in due parti così da inattivarlo e hanno legato ciascuna delle due a proteine progettate per legarsi a siti specifici del dna mitocondriale. In questo modo l’enzima, riunito, esplica la sua azione solo dove vogliono i ricercatori.
Questo nuovo sistema, sostengono gli autori dalle pagine di Nature, potrebbe consentire di creare modelli animali con mutazioni equivalenti a quelle umane per studiarle meglio e accelerare i tempi della ricerca. E magari, ma dovrà passare ancora molto tempo, in futuro potrà essere usata per correggere o eliminare i geni mitocondriali malati.
“Cosa fa una mascherina? Blocca le goccioline respiratorie provenienti dalla bocca e dalla gola”. Il professor Richard Davis, direttore del laboratorio di microbiologia clinica al Providence Sacred Heart Medical Center in Spokane, nello stato di Washington, con una prova elementare ha evidenziato l’importanza dell’uso della mascherina.
Ha documentato su Twitter il suo test e ha ottenuto un successo strepitoso, con centinaia di migliaia di retweet e like. “Due semplici esempi. Il primo: ho starnutito, cantato, parlato e tossito verso una piastra di coltura di agar con o senza mascherina. Le colonie di batteri mostrano dove le goccioline sono cadute. Una mascherina le blocca sostanzialmente”, scrive pubblicando foto eloquenti: le piastre non protette dalle mascherine mostrano una presenza batterica nettamente superiore L’esperimento non fa riferimento alla presenza del Covid-19 nelle goccioline ma di batteri generici nelle ‘droplets’.
Su Twitter, l’esperimento riscuote un enorme successo e Davis si trova a dover rispondere a decine di commenti e domande. “E’ vero al 100% -dice rispondendo ad un utente-. I batteri sono incredibilmente diversi dai virus. Ma visto che si ritiene che il Covid-19 si diffonda soprattutto attraverso le droplets, sfrutto la presenza di batteri nelle droplets per mostrare dove vanno”. Davis, che riconosce il carattere empirico della prova, ha utilizzato una mascherina chirurgica.
Lo scienziato, come documenta un’altra foto, ha anche eseguito un’ulteriore prova: ha tossito “violentemente” a diverse distanze dalle piastre. Prima con la mascherina, poi senza. Anche in questo caso, il dispositivo di protezione ha funzionato.
What does a mask do? Blocks respiratory droplets coming from your mouth and throat.
Two simple demos:
First, I sneezed, sang, talked & coughed toward an agar culture plate with or without a mask. Bacteria colonies show where droplets landed. A mask blocks virtually all of them. pic.twitter.com/ETUD9DFmgU
Lo chiamano antivaccinismo o semplicemente movimento No Vax e, con la pandemia di coronavirus che si è scatenata violentemente sopra le nostre teste, sono tornati a farsi sentire.
Dato quasi per scontato che la soluzione ultima per metter fine a questo “mostro” chiamato COVID-19 sia la scoperta di uno o più vaccini, l’opinione pubblica si spacca a riguardo.
Comunque la si pensi, sembra che a orientare le posizioni su un tema così delicato siano le informazioni e i gruppi di opinione che si trovano su Internet, e in particolare sui social media.
Un nuovo studio pubblicato su “Nature” da Neil Johnson e colleghi della George Washington University, ha tracciato una mappa completa delle interazioni su Facebook tra persone a favore, contrarie o neutrali alle vaccinazioni, indicando come si possono influenzare a vicenda e dimostrando che queste comunità online sono un terreno fertile per la crescita e lo sviluppo della sfiducia nelle competenze di medici e scienziati.
La ricerca s’inserisce in un ricco filone di studi che cerca di analizzare come si propaga in rete la disinformazione su temi particolarmente importanti come il riscaldamento climatico o, in tempi più recenti, la pandemia del nuovo coronavirus.
La preoccupazione è che le notizie infondate e fuorvianti possano diffondere comportamenti scorretti, aggravando il contagio a livello globale.
Magari, quando la tempesta coronavirus sarà passata, scopriremo (forse ci vorranno anni) interessanti o scabrosi retroscena su questo capitombolo mondiale, sulla sua reale natura, sull’esistenza di eventuali complotti o doppi fini, oppure semplicemente sull’impreparazione dell’umanità, distratta da ben altro, ad una simile pandemia.
I credenti, come il sottoscritto, fanno risalire velocemente alla mente il versetto biblico di Luca 21:11 che preannunciava simili situazioni.
Ad ogni modo malattie mortali o fortemente invalidanti sono una realtà, come sono altrettanto realtà i numeri.
Purtroppo, ma è pur comprensibile, non tutti hanno familiarità con l’analisi statistica dei dati. Quale uomo di scienza, ed avendo particolare familiarità con ciò che c’è dietro la scoperta di un nuovo farmaco o soluzione terapeutica, in termini di tempi, test e autorizzazioni, non posso che essere concorde con la frase che ha reso celebre un famoso ingegnere statunitense:
Detto in parole povere, senza prove o senza numeri le nostre posizioni (anche in tema vaccini) restano semplicemente opinioni.
Ed è sulla base di ciò, che non intendo dilungarmi in personali disquisizioni o basi scientifiche. Dico solo: facciamo parlare i numeri qui sotto e poi scegliete/valutate il “meno peggio”.
T Cell approaches, attacks and destroy cancer cell
Immunotherapy is a type of cancer treatment that helps your immune system fight cancer. The immune system helps your body fight infections and other diseases. It is made up of white blood cells and organs and tissues of the lymph system.
Immunotherapy is a type of biological therapy. Biological therapy is a type of treatment that uses substances made from living organisms to treat cancer.
How the Immune System Fights Cancer
How does immunotherapy work against cancer?
As part of its normal function, the immune system detects and destroys abnormal cells and most likely prevents or curbs the growth of many cancers. For instance, immune cells are sometimes found in and around tumors. These cells, called tumor-infiltrating lymphocytes or TILs, are a sign that the immune system is responding to the tumor. People whose tumors contain TILs often do better than people whose tumors don’t contain them.
Even though the immune system can prevent or slow cancer growth, cancer cells have ways to avoid destruction by the immune system. For example, cancer cells may:
Have genetic changes that make them less visible to the immune system.
Have proteins on their surface that turn off immune cells.
Change the normal cells around the tumor so they interfere with how the immune system responds to the cancer cells.
Immunotherapy helps the immune system to better act against cancer.
Real case of Immunotherapy treatment
What are the types of immunotherapy?
Several types of immunotherapy are used to treat cancer. These include:
Immune checkpoint inhibitors, which are drugs that block immune checkpoints. These checkpoints are a normal part of the immune system and keep immune responses from being too strong. By blocking them, these drugs allow immune cells to respond more strongly to cancer.
T-cell transfer therapy, which is a treatment that boosts the natural ability of your T cells to fight cancer. In this treatment, immune cells are taken from your tumor. Those that are most active against your cancer are selected or changed in the lab to better attack your cancer cells, grown in large batches, and put back into your body through a needle in a vein. T-cell transfer therapy may also be called adoptive cell therapy, adoptive immunotherapy, or immune cell therapy.
Monoclonal antibodies, which are immune system proteins created in the lab that are designed to bind to specific targets on cancer cells. Some monoclonal antibodies mark cancer cells so that they will be better seen and destroyed by the immune system. Such monoclonal antibodies are a type of immunotherapy. Monoclonal antibodies may also be called therapeutic antibodies.
Treatment vaccines, which work against cancer by boosting your immune system’s response to cancer cells. Treatment vaccines are different from the ones that help prevent disease.
Immune system modulators, which enhance the body’s immune response against cancer. Some of these agents affect specific parts of the immune system, whereas others affect the immune system in a more general way.
Which cancers are treated with immunotherapy?What are the side effects of immunotherapy?
Dario Sannino, esperto del settore farmaceutico, ci conferma che la corsa ai vaccini contro il nuovo coronavirus non si ferma. E in gara, ovviamente non l’uno contro l’altro ma se mai tutti insieme, ci sono più di 95 candidati che diversi gruppi di ricerca nel mondo stanno studiando – molti ancora in fase preclinica e solo qualcuno già testato su volontari umani. Poco più di un mese fa, un team dell’università di Oxford ha annunciato di star studiando un vaccino le cui prime dosi sarebbero potute arrivare già nell’autunno 2020. Oggi questo gruppo, cui si aggiunge una squadra anche italiana, sta per iniziare la fase 2-3 – le ultime due fasi – della sperimentazione clinica, come annuncia una nota della Oxford University. Ecco come funzionerà questo studio e a che punto siamo anche con gli altri vaccini.
Il vaccino di Oxford sta per iniziare la fase 2-3
Il 27 aprile 2020 il gruppo dello Jenner Institute all’università di Oxford dichiarava di aver iniziato il primo trial clinico con il vaccino denominato ChAdOx1 su un gruppo ristretto di pazienti. Qualora fosse andato tutto come previsto, spiegavano i ricercatori, le prime dosi disponibili (qualche milione) sarebbero potute arrivare già nel settembre 2020 – e questo è ancora possibile, ma tuttora non si ha alcuna certezza. Al vaccino sta lavorando anche l’Italia, come si legge in una nota dell’Ansa, che riporta che il trial clinico di fase 2-3 (la fase 3 è l’ultima della sperimentazione) partirà fra pochi giorni, sia nel Regno Unito, sia in Brasile.
Nella fase 1, iniziata nell’aprile 2020, sono già state fatte più di 1.000 vaccinazioni e il follow-up è ancora in corso. Nelle prossime fasi i partecipanti saranno molti di più, come previsto nel percorso della sperimentazione clinica sia dei vaccini sia dei farmaci, e saranno più di 10mila, di cui circa 5mila nel Regno Unito e 5mila in Brasile. Mentre nella fase 1 la fascia d’età coinvolta andava dai 18 ai 55 anni, nella fase 2 saranno inclusi anche partecipanti dai 56 anni in su e dai 5 ai 12 anni: questo servirà a capire se il sistema immunitario delle persone anziane ma anche dei bambini e dei giovanissimi risponde in maniera sufficiente al vaccino. Nella fase 3, poi, quando il vaccino avrà dimostrato in prima battuta di essere sicuro e efficace, i ricercatori dovranno valutare e confermare efficacia e sicurezza su un campione ancora più vasto di persone con più di 18 anni.
Vaccino, perché proprio il Brasile
Come mai prenderà parte anche il Brasile? I motivi sono dovuti al fatto che qui siamo nel pieno dell’epidemia (fra il 4 e il 5 giugno ci sono stati quasi 31mila nuovi casi di contagio e 1.473 morti in un solo giorno). Mentre in Italia e in altri paesi europei la (fortunatamente) bassa circolazione del virus non permette di poter svolgere trial clinici più ampi – tanto che tempo fa, nel pieno dell’epidemia, qualcuno si era chiesto se fosse etico infettare deliberatamente le persone in mancanza di un campione sufficientemente grande.
Vaccini, i trial clinici attivi
Ma ChAdOx1 non è l’unico candidato promettente. Attualmente i trial clinici – arrivati dunque già ai test sull’essere umano e non soltanto sugli animali – che studiano vaccini contro il coronavirus e che sono già attivi e partiti sono vari, come risulta dalla pagina ufficiale di Clinicaltrials.gov, su cui si possono trovare tutte le informazioni su trial preclinici e clinici sui vaccini e sulle terapie contro Covid-19. Il vaccino Ad5-nCov ha dato buoni risultati nella fase 1, il cui follow-up è ancora in corso, mentre in un altro trial è già partita la fase 2, dal 12 aprile 2020, su 508 partecipanti. Anche questo, come il precedente, utilizza un adenovirus, un comune virus del raffreddore, come vettore del materiale genetico del Sars-Cov-2 necessario per la vaccinazione.
Anche il vaccino mRna-1273 ha fatto registrare, nella fase 1, dati preliminari positivi per quanto riguarda la tollerabilità e la sicurezza (ma ancora solo su 8 partecipanti – la fase 1, appunto). Nel frattempo, il 15 maggio è iniziato poi un trial clinico, di fase 1 e 2, con un vaccino terapeutico, dunque non a scopo preventivo, come i precedenti, ma come terapia (non è la prima volta che si parla di vaccini terapeutici). Questo trattamento è una pillola derivata dal plasma inattivato dei pazienti con Covid-19. La pillola verrà somministrata una volta al giorno per almeno un mese in 20 volontari sani. Ma numerosi sono i candidati promettenti e solo il tempo ci dirà quanti e quali si mostreranno efficaci e arriveranno prima.
Le “CAR-T” (acronimo dall’inglese “Chimeric Antigen Receptor T cell therapies” ovvero “Terapie a base di cellule T esprimenti un Recettore Chimerico per antigene”) sono nuove terapie personalizzate contro il cancro che agiscono direttamente sul sistema immunitario del paziente per renderlo in grado di riconoscere e distruggere le cellule tumorali (immunoterapie).
Dario Sannino ha avuto modo di approfondire durante i suoi studi presso la facoltà di Scienze e tecnologie dei Materiali dell’Università Bicocca di Milano aspetti legati l’ingegneria dei materiali, nanotecnologie applicate e chimica della materia.
Le CAR-T rientrano tra le cosiddette terapie avanzate, frutto dei progressi scientifici nel campo della biotecnologia cellulare e molecolare. Sono, più nello specifico, terapie geniche, poichè agiscono attraverso l’inserzione di materiale genetico all’interno delle cellule dell’organismo umano.
Le CAR-T utilizzano specifiche cellule immunitarie (i linfociti T), che vengono estratte da un campione di sangue del paziente, modificate geneticamente e coltivate in laboratorio (“ingegnerizzate”) per essere poi re-infuse nel paziente per attivare la risposta del sistema immunitario contro la malattia. Si distinguono, quindi, da altre terapie immunitarie note come “inibitori dei checkpoint immunologici” (come ad esempio gli anticorpi monoclonali), che mirano a togliere il freno alla risposta immunitaria, orientandola contro il cancro.
La tecnologia CAR-T, altamente innovativa, è stata inizialmente sviluppata dall’Università della Pennsylvania. Il primo trattamento è stato somministrato nel 2012 negli Stati Uniti a una bambina di 7 anni che non rispondeva alle terapie classiche.
Si è finora rivelata efficace per alcuni tumori ematologici, anche se in tutto il mondo sono in corso sperimentazioni per altre indicazioni terapeutiche.
La produzione e la somministrazione di una terapia CAR-T richiedono una procedura complessa, che coinvolge specifiche figure professionali ed è articolata in più fasi:
1. Prelievo: i linfociti T vengono prelevati dal sangue del paziente in un centro trasfusionale autorizzato, mediante un processo che consente di isolarli dal sangue periferico (leucaferesi), rimettendo in circolo i restanti elementi ematici. I linfociti T vengono successivamente congelati e inviati alla struttura che si occuperà dell’ingegnerizzazione genetica.
2. Ingegnerizzazione genetica: i linfociti T del paziente vengono geneticamente modificati, in strutture altamente qualificate per la produzione di terapie avanzate. Utilizzando un virus inattivato (vettore virale), viene aggiunto al DNA dei linfociti un gene ricombinante che permette di esprimere sulla superficie dei linfociti T una proteina, nota come Recettore dell’Antigene Chimerico (CAR). Grazie a questo recettore, i linfociti T modificati (CAR-T cells) sono in grado di riconoscere un antigene specifico presente sulla superficie delle cellule tumorali e legarsi ad esse.
Le cellule CAR-T vengono moltiplicate in laboratorio, congelate e successivamente inviate al centro che dovrà somministrare il trattamento.
3. Chemioterapia pre-trattamento (linfodepletiva): prima dell’infusione, il paziente è sottoposto a una chemioterapia di preparazione per permettere ai linfociti T modificati di espandersi e attivarsi nell’organismo. La chemioterapia può essere somministrata anche in regime di day hospital.
4. Infusione: dopo la chemioterapia, le cellule CAR-T vengono infuse nel paziente, con un procedimento simile a una trasfusione di sangue. L’infusione avviene in centri ad alta specializzazione per il trattamento delle leucemie e dei linfomi, con disponibilità di accesso alla terapia intensiva.
5. Monitoraggio: dopo l’infusione, il paziente resta in ricovero per alcuni giorni e viene costantemente monitorato per reazioni avverse al trattamento. Nelle quattro settimane successive alla dimissione, il paziente deve comunque rimanere nei pressi di una struttura clinica qualificata per essere sottoposto a regolari controlli.
Le CAR-T autorizzate. Trattamenti di “terza linea”
Le terapie CAR-T rappresentano la prima forma di terapia genica approvata per il trattamento della leucemia linfoblastica B e di alcune forme aggressive di linfoma non-Hodgkin. Le terapie CAR-T che hanno ottenuto l’Autorizzazione all’Immissione in Commercio (AIC) nell’Unione Europea sono:
• Kymriah (tisagenlecleucel), autorizzato il 22 agosto 2018
• Yescarta (axicabtagene ciloleucel), autorizzato il 23 agosto 2018
e sono indicate per il trattamento di:
pazienti pediatrici e giovani adulti fino a 25 anni di età affetti da leucemia linfoblastica acuta a cellule B che non abbiano mai risposto alla chemioterapia, o che siano in recidiva dopo trapianto di cellule staminali emopoietiche allogeniche o dopo almeno 2 linee di chemioterapia (Kymriah);
pazienti con linfoma diffuso a grandi cellule B o DLBCL (Kymriah e Yescarta) / linfoma primitivo del mediastino a cellule B o PMBCL (Yescarta) già sottoposti ad almeno 2 linee di terapia sistemica.
Le CAR-T rappresentano per queste malattie linfoproliferative un’ulteriore opzione terapeutica, e sono state studiate in pazienti nei quali le precedenti strategie standard (chemioterapia e trapianto di cellule staminali emopoietiche) non si sono dimostrate efficaci.
Attualmente, i pazienti pediatrici con leucemia linfoblastica acuta a cellule B (B-ALL) trattati in prima linea con protocolli polichemioterapici hanno probabilità di guarigione anche superiori all’85% e circa il 60-70% dei pazienti con linfoma non Hodgkin di tipo DLBCL o PMBCL può ottenere un controllo di malattia a lungo termine (o la guarigione) con gli attuali protocolli immunochemioterapici di prima linea, seguiti o meno da radioterapia. La terapia standard di seconda linea è in entrambi i casi basata sulla possibilità di accesso al trapianto di cellule staminali emopoietiche (da un donatore compatibile nel caso della leucemia, dallo stesso paziente nel caso dei linfomi) in seguito a risposta ad una chemioterapia di salvataggio.
Per questo motivo, le terapie CAR-T sono indicate per pazienti che non abbiano mai risposto alla chemioterapia o che siano in recidiva dopo trapianto di cellule staminali emopoietiche o dopo almeno 2 linee di chemioterapia (sono quindi terapie “di terza linea”). A causa delle reazioni avverse – anche gravi – che possono verificarsi con la terapia con CAR-T, l’idoneità al trattamento deve essere attentamente valutata caso per caso da medici ematologi esperti nel trattamento delle leucemie e dei linfomi, anche in considerazione del quadro clinico complessivo del paziente (ad esempio la presenza di gravi patologie concomitanti renali, epatiche, cardiache, infettive che possano metterlo a rischio di vita). La complessità e le tempistiche richieste per la procedura terapeutica, che include anche un trattamento di chemioterapia linfodepletiva pre-trattamento, impongono che il quadro clinico del paziente sia tale da garantirne la stabilità fino al momento dell’infusione.
CAR-T: efficacia e sicurezza del trattamento
Rispetto alle terapie “convenzionali”, le CAR-T permettono di ottenere remissioni complete anche in fasi di malattia molto avanzate. Inoltre, a un anno dall’infusione di
CAR-T, la maggior parte dei pazienti che ha ottenuto una remissione è ancora viva e libera da malattia.
Negli studi clinici1 valutati ai fini dell’Autorizzazione all’Immissione in Commercio (AIC) della terapia CAR-T per la leucemia linfoblastica acuta (LLA) a cellule B refrattaria, in recidiva post-trapianto o in seconda o ulteriore recidiva, sono stati osservati i seguenti dati di efficacia:
• l’81% dei pazienti che ha ricevuto la terapia CAR-T ha ottenuto una remissione completa della leucemia;
• l’80% dei pazienti che ha ottenuto una remissione completa di malattia era ancora libero da malattia 6 mesi dopo l’infusione della terapia CAR-T;
• il 76% dei pazienti che ha ricevuto la terapia CAR-T era ancora in vita a distanza di un anno dal trattamento.
Per il trattamento del linfoma B diffuso a grandi cellule B (Diffuse Large B Cell Lymphoma – DLBCL) e del linfoma primitivo del mediastino a cellule B (Primary mediastinal B-cell Lymphoma – PMBCL) dopo fallimento di due o più linee di terapia sistemica, negli studi clinici2 delle terapie CAR-T autorizzate si è invece osservato che:
• il 40-47% dei pazienti che ha ricevuto la terapia CAR-T ha ottenuto una remissione completa del linfoma;
• il 65% dei pazienti che ha ottenuto una remissione completa era ancora libero da malattia a distanza di 12 mesi dall’infusione;
• il 50-60% dei pazienti che ha ricevuto la terapia CAR-T era ancora in vita a un anno dal trattamento.
Tuttavia l’utilizzo di terapie CAR-T è associato al rischio di eventi avversi anche gravi. In particolare:
sindrome da rilascio di citochine (CRS): la CRS è caratterizzata dalla possibile comparsa di febbre, abbassamento della pressione arteriosa, aumento della frequenza cardiaca, brividi e riduzione dell’ossigeno nel sangue ed è dovuta all’intensa risposta infiammatoria che si sviluppa in seguito all’attivazione delle cellule CAR-T nell’organismo. È stata osservata in una percentuale variabile tra il 58% e il 93% dei pazienti e, nella maggior parte dei casi, si manifesta entro 7-14 giorni dalla somministrazione della terapia. Il 12-47% dei pazienti ha presentato una CRS grave, che in alcuni casi ha richiesto il ricovero in terapia intensiva, e in rari casi è risultata fatale. In caso di CRS grave sono somministrati farmaci specifici per ridurre i livelli di sostanze infiammatorie in circolo (per esempio tocilizumab o cortisonici);
riduzione dei linfociti B e degli anticorpi (ipogammaglobulinemia): l’utilizzo delle terapie CAR-T comporta, insieme alle cellule tumorali, anche la distruzione dei linfociti B (cellule del sistema immunitario responsabili della produzione di anticorpi), con riduzione del livello di anticorpi nel sangue riscontrabile nel 14-47% dei pazienti trattati. In alcuni casi, per raggiungere una concentrazione normale di anticorpi e ridurre il rischio infettivo, è stato necessario sottoporre i pazienti a infusioni periodiche di immunoglobuline umane (anticorpi);
reazioni avverse neurologiche: le più comuni osservate sono grave alterazione dello stato di coscienza (encefalopatia), tremore, incapacità di esprimersi o di comprendere informazioni scritte o verbali (afasia), delirio. Nella maggior parte dei casi si presentano entro le 8 settimane successive alla somministrazione della terapia CAR-T, in una percentuale variabile tra il 21% e il 65% dei pazienti. La durata media di queste alterazioni è stata di 14 giorni, con scomparsa completa dei sintomi nel 98% dei pazienti. Il 13-31% dei pazienti ha presentato reazioni avverse neurologiche gravi (potenzialmente letali).
Sebbene non osservate, alcune possibili criticità legate all’ingegnerizzazione delle cellule sono rappresentate dallo sviluppo di virus capaci di replicarsi e infettare l’organismo e dall’insorgenza di tumori che possono originarsi dalle cellule geneticamente modificate. Per tale ragione, l’Agenzia Europea per i Medicinali (EMA) ha recentemente richiesto l’implementazione di un registro dei pazienti trattati per monitorarli fino a quindici anni dopo l’infusione.
Le CAR-T in Europa e in Italia
Quadro europeo
Attualmente non esiste un database europeo per le terapie CAR-T che consenta di conoscere in tempo reale il numero e la tipologia di trattamenti avviati nell’Unione Europea sia in sperimentazioni cliniche che con i prodotti già autorizzati. L’Agenzia Europea per i Medicinali (EMA) ha recentemente richiesto l’implementazione di un registro dei pazienti trattati per monitorarli fino a quindici anni dopo l’infusione.
Le CAR-T in Italia
In Italia è stato raggiunto l’accordo per la rimborsabilità di tisagenlecleucel da parte del Servizio Sanitario Nazionale (SSN) per entrambe le indicazioni autorizzate, e quindi sia per il trattamento di pazienti pediatrici e giovani adulti fino a 25 anni di età affetti da leucemia linfoblastica acuta a cellule B che non abbiano mai risposto alla chemioterapia, o che siano in recidiva dopo trapianto di cellule staminali emopoietiche allogeniche o dopo almeno 2 linee di chemioterapia, sia per i pazienti con linfoma diffuso a grandi cellule B o DLBCL già sottoposti ad almeno 2 linee di terapia sistemica.
Il 7 agosto l’AIFA ha approvato la rimborsabilità della prima terapia CAR-T.
I centri in cui si potranno effettuare le infusioni di CAR-T sono identificati dalle Regioni e possiedono tutte le autorizzazioni previste per legge.
Il processo per la produzione e somministrazione delle CAR-T è, infatti, molto complesso e necessità di un adeguato monitoraggio clinico del paziente dopo l’infusione del trattamento. Per tali motivi i centri specializzati in ematologia e onco-ematologia, pediatrica e per adulti, per poter essere autorizzati alla somministrazione delle terapie CAR-T, devono essere in possesso di specifici requisiti organizzativi e infrastrutturali, quali ad esempio: la certificazione del Centro Nazionale Trapianti in accordo con le Direttive UE, l’accreditamento per il trapianto allogenico, un centro di aferesi, un laboratorio per la criopreservazione con personale qualificato e adeguatamente formato, la disponibilità di un’Unità di Terapia Intensiva, la presenza di un team multidisciplinare adeguato alla gestione clinica del paziente e delle possibili complicanze.
L’AIFA renderà disponibile sul proprio sito l’elenco dei Centri autorizzati alla somministrazione del trattamento non appena questi saranno stati individuati dalle competenti Regioni e Province Autonome.
Sperimentazioni cliniche e uso compassionevole
Ad oggi sono state autorizzate 17 sperimentazioni cliniche che prevedono l’utilizzo delle terapie CAR-T. Una di queste è stata finanziata dall’Agenzia Italiana del Farmaco nell’ambito dei bandi per la Ricerca Indipendente. È inoltre possibile per pazienti affetti da linfoma primitivo del mediastino a cellule B (PMBCL) già sottoposti ad almeno 2 linee di terapia sistemica, accedere al trattamento con axicabtagene ciloleucel (Yescarta), nell’ambito dell’uso compassionevole), con fornitura diretta e gratuita del medicinale da parte dell’azienda produttrice.
Le terapie CAR-T somministrate nelle sperimentazioni in corso o in fase autorizzativa in Italia sono 6. Oltre alla leucemia linfoblastica acuta in fase recidiva/refrattaria e al linfoma non Hodgkin a cellule B recidivato o refrattario, gli studi riguardano anche i linfomi follicolari refrattari o recidivati, il neuroblastoma ad alto rischio e/o recidivo/refrattario e il mieloma multiplo recidivante e refrattario.
Glossario
Anticorpi monoclonali
Anticorpi sintetizzati in laboratorio e “disegnati” per legare in maniera selettiva un singolo bersaglio all’interno dell’organismo (o “antigene”, p.e. una proteina espressa sulla superficie di alcune cellule specifiche). Gli anticorpi monoclonali sono utilizzati nel trattamento di vari tipi di tumori, da soli, o in combinazione/coniugati con agenti antitumorali. Legando l’antigene, l’anticorpo monoclonale può stimolare una risposta immunitaria contro il bersaglio o facilitare l’introduzione nella cellula tumorale di agenti tossici, al fine di eliminare le cellule bersaglio.
CAR-T
Acronimo dall’inglese “Chimeric Antigen Receptor T cell” sta per “recettore antigenico chimerico delle cellule T”. Sono recettori sintetizzati in laboratorio per riconoscere le cellule tumorali.
Chemioterapia linfodepletiva
Particolari protocolli chemioterapici che hanno l’obiettivo di ridurre il numero dei linfociti circolanti. Una chemioterapia linfodepletiva (p.e. ciclofosfamide e fludarabina) è solitamente somministrata prima dell’infusione di CAR-T per permettere una più rapida e intensa espansione delle cellule CAR-T nell’organismo, migliorando così l’efficacia della terapia.
Inibitori dei checkpoint immunologici
Farmaci che agiscono bloccando alcune proteine presenti sulle cellule del sistema immunitario e, in maniera anormale, sulle cellule di alcuni tumori (p.e. PD-1/PD-L1, CTLA-4/B7-1/B7-2). Queste proteine regolano l’azione del sistema immunitario, e in alcuni casi possono impedire alle cellule del sistema immunitario (linfociti T) di eliminare le cellule tumorali. Bloccando queste proteine con farmaci specifici, questo “freno” al sistema immunitario viene rimosso, e i linfociti T riacquisiscono la capacità di eliminare le cellule tumorali.
Leucaferesi
Procedura trasfusionale che preleva il sangue dall’organismo per rimuovere/raccogliere un tipo specifico di cellula del sangue. Le cellule rimanenti e il plasma sono re-infusi al paziente.
Leucemia linfoblastica acuta a cellule B (B-ALL)
E’ la più comune forma tumorale riscontrabile in età pediatrica. Attualmente i pazienti con tale patologia sono trattati in prima linea con protocolli polichemioterapici intensivi, che garantiscono probabilità di guarigione anche superiori all’85%. Per i pazienti ad alto rischio o non rispondenti/in recidiva dopo il trattamento iniziale, il trapianto di cellule staminali emopoietiche allogeniche (da un donatore compatibile), quando possibile, rappresenta la terapia standard di seconda linea. Le percentuali di guarigione in questo caso sono però più basse rispetto a quanto si osserva in prima linea. Le terapie CAR-T possono essere utilizzate quando le due precedenti linee di trattamento non hanno funzionato.
Linfociti T
I linfociti T sono cellule fondamentali per la risposta immunitaria dell’organismo, derivano da una cellula staminale pluripotente del midollo osseo e maturano nel timo. I linfociti T hanno un recettore specifico per l’antigene costituito da una specifica struttura detta TCR (T-cell receptor) associata a un insieme di molecole che formano un’unità strutturale. I linfociti T hanno un ruolo importante nell’eliminazione delle cellule neoplastiche e di molti agenti patogeni.
Linfoma diffuso a grandi cellule B e linfoma primitivo del mediastino a cellule B
Il linfoma non Hodgkin (NHL) diffuso a grandi cellule B (DLBCL) e il linfoma non Hodgkin primitivo del mediastino a cellule B (PMBCL) sono due forme di linfoma aggressivo. In particolare, il DLBCL è la forma più comune, rappresentando circa il 30% di tutti i LNH di nuova diagnosi. La prognosi di queste forme dipende dalle caratteristiche cliniche del paziente, dall’estensione della malattia al momento della diagnosi e dalle caratteristiche biologiche e genetiche delle cellule tumorali. Con gli attuali protocolli di immunochemioterapia (regimi terapeutici che combinano chemioterapici classici con immunoterapici biologici), seguiti o meno da radioterapia, il 60-70% dei pazienti può ottenere un controllo della malattia a lungo termine o la guarigione. Per i pazienti refrattari al trattamento o in recidiva dopo un’iniziale risposta clinica, la strategia terapeutica standard consiste in una immunochemioterapia di seconda linea (o di salvataggio) seguita da chemioterapia ad alte dosi e trapianto di cellule staminali emopoietiche autologhe (ovvero ottenute dallo stesso paziente). Le opzioni terapeutiche efficaci per i pazienti che non rispondono alla terapia di salvataggio e/o non possono ricevere un trapianto di cellule staminali emopoietiche autologhe (ad esempio per età avanzata o gravi condizioni patologiche concomitanti) sono limitate. Per questo motivo, la terapia cellulare CAR-T è stata studiata ed è indicata per pazienti con DLBCL o PMBCL dopo due o più linee di terapia sistemica.
Terapie avanzate
Sono terapie sviluppate grazie ai recenti progressi scientifici nel campo della biotecnologia cellulare e molecolare e possono essere classificate in quattro gruppi principali:
Medicinali di terapia genica: Agiscono attraverso l’inserzione di materiale genetico (DNA “ricombinante”) all’interno delle cellule dell’organismo. Un gene ricombinante è un tratto di DNA che viene creato in laboratorio, riunendo DNA da fonti diverse. Sono utilizzate per il trattamento di una varietà di malattie, tra cui malattie genetiche, cancro o malattie croniche.
Medicinali di terapia cellulare somatica: Contengono cellule o tessuti che sono stati manipolati per cambiare le loro caratteristiche biologiche, o cellule/tessuti non destinati ad essere utilizzati per le stesse funzioni essenziali originali. Possono essere utilizzati per curare, diagnosticare o prevenire le malattie.
Medicinali di ingegneria tessutale: Contengono cellule o tessuti che sono stati modificati in modo da poter essere impiegati per riparare, rigenerare o sostituire tessuti umani.
Medicinali di terapia avanzata combinati: Contengono uno o più dispositivi medici come parte integrante del medicinale. Un esempio sono le cellule fatte crescere su matrici biodegradabili o supporti sintetici.